Tandemly Integrated HPV16 Can Form a Brd4-Dependent Super-Enhancer-Like Element That Drives Transcription of Viral Oncogenes
نویسندگان
چکیده
UNLABELLED In cancer cells associated with human papillomavirus (HPV) infections, the viral genome is very often found integrated into the cellular genome. The viral oncogenes E6 and E7 are transcribed from the viral promoter, and integration events that alter transcriptional regulation of this promoter contribute to carcinogenic progression. In this study, we detected highly enriched binding of the super-enhancer markers Brd4, MED1, and H3K27ac, visible as a prominent nuclear focus by immunofluorescence, at the tandemly integrated copies of HPV16 in cells of the cervical neoplasia cell line W12 subclone 20861. Tumor cells are often addicted to super-enhancer-driven oncogenes and are particularly sensitive to disruption of transcription factor binding to the enhancers. Treatment of 20861 cells with bromodomain inhibitors displaced Brd4 from the HPV integration site, greatly decreased E6/E7 transcription, and inhibited cellular proliferation. Thus, Brd4 activates viral transcription at this integration site, and strong selection for E6/E7 expression can drive the formation of a super-enhancer-like element to promote oncogenesis. IMPORTANCE Oncogenic human papillomaviruses play an essential role in the development of cervical cancer, and growth of these cancer cells requires continued expression of the viral E6 and E7 oncogenes. Integration of the virus into the host genome often results in deregulation of E6 and E7 expression, which provides a selective growth advantage and increases genetic instability of infected cells. We show here that tandemly integrated copies of the viral genome can form a super-enhancer-like element that drives E6/E7 transcription. Targeted disruption of factors binding to this element decreases viral transcription and causes cell death. Thus, cancer cells that harbor integrated HPV could be targeted by therapeutics that disrupt super-enhancer function.
منابع مشابه
HPV integration hijacks and multimerizes a cellular enhancer to generate a viral-cellular super-enhancer that drives high viral oncogene expression
Integration of human papillomavirus (HPV) genomes into cellular chromatin is common in HPV-associated cancers. Integration is random, and each site is unique depending on how and where the virus integrates. We recently showed that tandemly integrated HPV16 could result in the formation of a super-enhancer-like element that drives transcription of the viral oncogenes. Here, we characterize the c...
متن کاملDisruption of BRD4 at H3K27Ac-enriched enhancer region correlates with decreased c-Myc expression in Merkel cell carcinoma
Pathologic c-Myc expression is frequently detected in human cancers, including Merkel cell carcinoma (MCC), an aggressive skin cancer with no cure for metastatic disease. Bromodomain protein 4 (BRD4) regulates gene transcription by binding to acetylated histone H3 lysine 27 (H3K27Ac) on the chromatin. Super-enhancers of transcription are identified by enrichment of H3K27Ac. BET inhibitor JQ1 di...
متن کاملBRD4 Connects Enhancer Remodeling to Senescence Immune Surveillance.
UNLABELLED Oncogene-induced senescence is a potent barrier to tumorigenesis that limits cellular expansion following certain oncogenic events. Senescent cells display a repressive chromatin configuration thought to stably silence proliferation-promoting genes while simultaneously activating an unusual form of immune surveillance involving a secretory program referred to as the senescence-associ...
متن کاملCharacterization of the Human Papillomavirus 16 E8 Promoter.
UNLABELLED Persistent infections with certain human papillomaviruses (HPV) such as HPV16 are a necessary risk factor for the development of anogenital and oropharyngeal cancers. HPV16 genomes replicate as low-copy-number plasmids in the nucleus of undifferentiated keratinocytes, which requires the viral E1 and E2 replication proteins. The HPV16 E8^E2C (or E8^E2) protein limits genome replicatio...
متن کاملCCHCR1 Interacts Specifically with the E2 Protein of Human Papillomavirus Type 16 on a Surface Overlapping BRD4 Binding
The Human Papillomavirus E2 proteins are key regulators of the viral life cycle, whose functions are commonly mediated through protein-protein interactions with the host cell proteome. We identified an interaction between E2 and a cellular protein called CCHCR1, which proved highly specific for the HPV16 genotype, the most prevalent in HPV-associated cancers. Further characterization of the int...
متن کامل